学术活动
量子材料
Strong correlation and topology in 2D semiconductor moiré superlattices
浏览次数:
主讲人: 李听昕 (上海交通大学物理与天文学院)
地点: 6163银河线路检测中心物理楼西563会议室
时间: 2021年9月15日 (周三)下午3:00
主持 联系人: 杜瑞瑞
主讲人简介: 李听昕,现任上海交通大学物理与天文学院副教授,博士生导师。2011年于西北大学获学士学位,2016年于6163银河线路检测中心获博士学位(导师杜瑞瑞教授)。2016年至2021年先后在美国莱斯大学(2016.9-2018.3)和美国康奈尔大学(2018.3-2021.5, Prof. J. Shan & Prof. K. F. Mak课题组)从事博士后研究。主要研究兴趣为低维量子材料中的强关联物理、拓扑物理、磁性物理和超导物理等。近几年在二维半导体莫尔超晶格、二维拓扑绝缘体、二维磁性材料等方向取得了一系列研究成果,发表学术论文20余篇,其中包括第一作者(含共同一作)Nature一篇、Nature Materials三篇、Nature Nanotechnology一篇、Physical Review Letters两篇。

    摘要:

    Moiré superlattices formed in van der Waals materials have emerged as a new platform to explore strong correlation physics and topological physics in two-dimensional (2D) electronic systems. In this talk, I will mainly present electronic transport and compressibility studies of moiré superlattices built on 2D transition metal dichalcogenide (TMDc) semiconductors. A series of correlation-driven states, including Mott insulators [1], generalized Wigner crystals [2], and stripe phases [3], formed at either integer or fractional filling factors of the moiré superlattices. Benefiting from the extraordinary tunability of the system, an interaction-driven Mott transition has been realized experimentally [4]. Furthermore, we found the band topology also plays an important role in TMDc moiré superlattices, which enable us to realize a quantum anomalous Hall state in TMDc moiré superlattices [5]. Our studies pave the path for discovery of a wealth of emergent phenomena arising from the combined influence of strong correlation and topology in TMDc moiré superlattices.
[1] Y. Tang et al. Nature 579, 353-358 (2020).
[2] T. Li et al. Nature Nanotechnology (2021).
[3] C. Jin et al. Nature Materials 20, 940-944 (2021).
[4] T. Li et al. Nature (in-press).
[5] T. Li et al. arXiv:2107.01796