Structural and Electronic Properties of Metal-Encapsulated Silicon Clusters in a Large Size Range

Jing Lu^{1,2,*} and Shigeru Nagase^{1,†}

¹Department of Theoretical Studies, Institute for Molecular Science, Okazaki 444-8585, Japan

²Mesoscopic Physics Laboratory, Department of Physics, Peking University, Beijing 100871, People's Republic of China

(Received 2 July 2002; published 19 March 2003)

Structural and electronic properties of metal-doped silicon clusters MSi_ns (M = W, Zr, Os, Pt, Co, etc.) in a large size range of $8 \le n \le 20$ are investigated via *ab initio* calculations. Different from a recent experimental suggestion that the metal atom is endohedral in MSi_n , we reveal that the formation of endohedral structure strongly depends on the size of the Si_n cluster. Two novel structures of the chemically stable endohedral species are manifested. The suitable $M@Si_n$ building blocks of self-assembly materials vary in the range of $10 \le n \le 16$. The thermodynamical magic numbers are found to coincide with the chemical magic numbers for five clusters.

DOI: 10.1103/PhysRevLett.90.115506

The basis to fabricate cluster-assembled nanostructures is to find out suitable building blocks that are chemically stable and weakly interact with each other. Silicon clusters are expected to become such a building block in light of the extreme importance of silicon in the semiconducting industry. However, pure silicon clusters are chemically reactive [1] due to a universal existence of dangling bonds (DBs) [2-4] and are unsuitable as a building block of self-assembly materials. This status is now dramatically changed by introducing a metal atom in the Si_n clusters. A reaction of silane (SiH₄) with transition metal ions M^+ (M = Hf, Ta, W, Re, Ir, etc.) has led to MSi_nH_x clusters that only have a smaller number of hydrogens $(x \le 4 \text{ for all } n)$. Especially completely dehydrogenated MSi_n clusters appear at n = 14, 13, 12, 11, and 9, respectively, as an end product. The smaller hydrogen content in the MSi_nH_x clusters implies that most or all Si dangling bonds have been saturated by the M atom. To play that role, the *M* atom is conjectured to be located in the center of Si_n clusters [5], and a subsequent *ab initio* calculation identified a regular hexagonal prism with the W on the center as the ground state of WSi₁₂. There are several essential open questions about the MSi_n clusters. (1) Is the metal atom always located in the center of the Si_n clusters? (2) What is the size range of the chemically stable MSi_n clusters? (3) Why do the MSi_n cluster growths end at those specific numbers [5]?

As an effort to address the above questions, here we provide an *ab initio* structural and electronic investigation for transition-metal-doped silicon clusters MSi_ns (M = W, Zr, Os, Pt, Co, etc.) in a large size range $(8 \le n \le 20)$. The calculations are performed within the spin-unrestricted hybrid density functional theory with the B3LYP (Beck three-parameter Lee-Yang-Parr) exchange-correlation functional [6]. Pure and polarized double zeta basis set, labeled by LanL2DZ and LanL2DZ(*d*), are adopted for the *M* and Si atoms, respectively. The effective core potentials that have included the relativistic effects for the second and third PACS numbers: 61.46.+w, 36.40.Cg, 82.60.Qr

transition series are used for all the atoms [7]. In order to check basis effects, a larger all-electron polarized triple zeta basis set plus one diffuse function, labeled by 6-311 + G(d), is employed for the Si atom in single point energy calculations for several MSi_n clusters, and the energetic orderings of the competitive isomers are essentially unchanged except for $Os@Si_{14}$. The Si_n isomers selected to construct the initial MSi_n clusters are summarized in Table I. They have either lower energies or higher symmetries so that each Si atom has a chance to bond to the M atom. Harmonic vibrational frequencies are calculated for the promising stationary points from a direct structural optimization, and reoptimization is performed following the eigenvector of the first imaginary frequency for the saddle point if any until a local energy minimum is finally achieved. The embedding energy (EE) of M inside or outside Si_n is defined as EE = $E[Si_n] + E[M] - E[MSi_n]$, and $E[Si_n]$ is the energy of the most stable Si_n isomer [3,4]. The Kohn-Sham energy gap between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) is calculated using the nonhybrid BLYP functional to keep comparison with other calculations [9–11]. A chemically stable *M*-doped Si_n cluster satisfies three conditions herein: a full protection of the M atom (i.e., an endohedral structure), an absence of Si DBs, and a large HOMO-LUMO gap of over 0.50 eV valid for the carbon fullerenes [11,12]. The cutoff distances for the *M*-Si and Si-Si bonds are defined at 2.93 and 2.70 Å, respectively.

The calculated properties of the lowest energy isomers of the *M*-doped Si_n clusters are partially given and compared with the experimental data [5] in Table II. The lowest energy geometries of the W-doped Si_n clusters are displayed in Fig. 1, and those of the *M*-doped Si_n clusters that satisfy the octet rule [5] but $M \neq$ group 6 metals are displayed in Fig. 2. At first glance, three clusters, WSi₈, PtSi₈, and CoSi₉, are exohedral species. The exohedral WSi₈ has no Si DBs and is expected magic in the stability against H, which is in good agreement

	Isomers D_{3d} bicapped octahedron, C_{2v} and C_{3v} tetracapped tetrahedrons, C_{2v} bicapped <i>tri</i> prism. D_{1v} <i>tetra</i> antiprism.				
Si ₈ [8]					
Si ₉ [8]	C_{2v} bicapped <i>int</i> prism, D_{4h} <i>ictra</i> prism, D_{4d} <i>ictra</i> antiprism C_{3v} tricapped octahedron, D_{3h} tricapped <i>tri</i> prism				
Si ₁₀ [8]	$D_{5h} p$ prism, $D_{5d} p$ aniprism, T_d tetracapped octahedron,				
	C_{3v} tetracapped tri prism, D_{4d} bicapped tetra antiprism				
Si ₁₂ [3,5]	b structure, $C_{2\nu}$ hexacapped tri prism				
	D_{6h} h prism, D_{6d} h antiprism, I_h icosahedron				
Si ₁₄ [9]	c, d, and f structures, D_{7h} hp prism, D_{6h} bicapped h prism				
Si ₁₅ [10]	f, c1, and c2 structures				
Si ₁₆ [9]	f and FK structures, tetracapped h prisms				
Si ₂₀	I_h dodecahedron				

TABLE I. Si_n isomers used for constructing the initial MSi_n clusters. Two routines are employed to construct $M@Si_{18}$: capping two faces of $M@Si_{16}$ or removing two capping atoms of $M@Si_{20}$. *tri*: trigonal; *tetra*: tetragonal; *p*: pentagonal; *b*: basketlike; *h*: hexagonal; *c*: cubic; *d*: decahedral; *f*: fullerenelike; *hp*: heptagonal; *FK*: Frank-Kasper.

with an observed local maximum relative abundance of WSi_n among WSi_nH_x at n = 8 (about 30%) [5]. The calculated energy differences between the exohedral WSi_n and endohedral $W@Si_n$ are $\Delta E = E_{exo} - E_{endo} = -0.50, 0.39, 1.63, and \approx 6 \text{ eV}$ (estimated from an exohedral D_{6h} structure) for n = 8, 9, 10, and 12, respectively, indicative of an enhanced thermodynamic stability of the endohedral structure against the exohedral one with the increased size. The cause lies in that the *M*-Si bond number in the endohedral structure increases more quickly than that in the exohedral one with the increased

size. A clear exohedral-endohedral structural transition with the increased size has been recently observed in the W- and Tb-doped Si_n clusters [13], and the smallest endohedral W@Si_n clusters are shown to be W@Si₁₀, only one size larger than our prediction. Hence, from n = 12, we no longer consider exohedral cases.

The chemically stable $M@Si_n$ clusters in our calculations spread from n = 10 to n = 16. The smallest chemically stable $M@Si_n$ cluster is attributed to a basketlike $Os@Si_{10}$, which stems from the $C_{3\nu}$ tetracapped trigonal prism and have Os-Si and Si-Si bond lengths of

TABLE II. Theoretical (NDB_{theor}) and experimental number (NDB_{expt}) [5] of Si DBs, HOMO-LUMO gaps (eV), chemical stability, EE (eV), BE (binding energy, in eV/atom), and natural charges on *M* for the *M*-doped Si_n clusters. The capital letters *L* and *H* represent lower and higher chemical stability, respectively. Fe@Si₁₀ has a magnetic moment of $2\mu_B$ while for all others it is zero. All the Pt@Si_n and larger-size $M@Si_n$ (n = 17 [10], 18, and 20) always have Si DBs.

M-doped Si _n				Chemical			
	NDB _{theor}	NDB _{expt}	Gap	stability	EE	BE	Charge
WSi ₈	0	0	0.95	L	5.43	3.44	-0.41
PtSi ₈	11	• • •	1.38	L	4.35	3.33	-0.10
W@Si ₉	9	nonzero	1.19	L	5.14	3.42	-2.14
CoSi ₉	1	0	0.34	L	3.96	3.12	0.49
W@Si ₁₀	6	nonzero	1.39	L	5.09	3.50	-1.74
Os@Si ₁₀	0	• • •	1.48	H	5.60	3.55	-1.19
Ru@Si ₁₀	2	• • •	0.72	L	4.21	3.42	-1.26
Fe@Si ₁₀	0	• • •	0.25	L	2.27	3.25	-0.80
W@Si ₁₂	0	0	1.38	H	8.64	3.69	-1.74
$Zr@Si_{12} (C_1)$	8	nonzero	0.78	L	4.81	3.40	-0.45
$Os@Si_{12} (D_{6h})$	0	• • •	1.10	H	8.36	3.67	-1.28
W@Si ₁₄ (f)	0	• • •	0.38	L	8.74	3.70	-1.98
Zr@Si ₁₄ (dbhpa)	1	0	0.65	L	6.34	3.54	-1.97
$Zr@Si_{14} (dbhpb)$	0	0	1.23	H	6.18	3.53	-2.13
$Os@Si_{14}(c)^{a}$	0	• • •	1.63	H	7.19	3.60	-1.68
$W@Si_{15}(f)$	0	• • •	0.79	H	10.06	3.71	-2.04
W@Si ₁₆ (f)	1	• • •	1.11	L	10.22	3.73	-2.13
$\operatorname{Zr}@\operatorname{Si}_{16}(f)$	0	• • •	1.52	H	9.59	3.69	-2.19
W ₂ @Si ₂₀	0		0.55	H	16.75	3.65	-1.95

^aObtained using the 6-311 + G(d) basis set for the Si atom, while the LanL2DZ(d) basis set prefers the *dbhpa* structure.

W@Si₁₅ C_s W@Si₁₆C₁ W@Si₁₈C₁ W@Si₂₀C₁ W2 @Si20 C

FIG. 1 (color). Ground state isomers of the W-doped Si_n clusters and W₂@Si₂₀. The light blue balls represent Si atoms. For the endohedral structures, bonds connecting the W to the Si atoms are not displayed for clarity. The structures of Mo@Si₁₂ and $Cr@Si_{12}$ are identical with that of $W@Si_{12}$. The Os@Si_{15} and $Zr@Si_{16}$ have compact f structures, while $Pt@Si_{14}$, $M@Si_{15}$ (M = Zr and Pt), and $M@Si_{16}$ (M = Os and Pt) have distorted or capped f structures. All the larger-size $M@Si_n$ (n = 17 [10], 18, and 20) clusters have capped cage structures.

2.39-2.49 Å and 2.36-2.48 Å, respectively. The lowest energy isomer of $Zr@Si_{14}$ is a C_1 distorted bicapped hexagonal prismatic (dbhpa) structure, originating in the d structure and having two bonded capping atoms. However, a presence of one DB on its most projecting Si atom is contradictory to the observed higher stability against H for $Zr@Si_{14}$ [5]. Staring from the D_{6h} bicapped h prism, one can obtain a D_{2h} distorted bicapped hexagonal prismatic (dbhpb) structure with two wellseparated capping atoms. It is 0.16 eV slightly higher in energy than the *dbhpa* structure, but has no Si DBs. Keep in mind that the actual reaction between the metal and silicon is performed in the high-temperature vapor phase [5,13,14], where the entropy effect probably becomes as important as that observed for carbon clusters [15]. The free energy is calculated as the expressions given in Ref. [16]. The results show that, above 1200 K, the dbhpb structure indeed becomes more stable than the dbhpa one. The Zr-Si and Si-Si bond lengths are in the ranges of 2.72–2.93 Å and 2.28–2.42 Å, respectively, in the dbhpb structure.

The even charge distribution in the region between the Os and the six Si atoms on the hexagonal ring in $Os@Si_{10}$ [Fig. 3(a)] shows a metallic bonding between them, while a covalent bonding is clear between the Os and the bottom Si atoms from the high charge density along them [Fig. 3(b)]. In $Zr@Si_{14}$, the covalent character appears in the four shortest Zr-Si bonds, one of which is displayed in Fig. 3(c). From Table II, the average natural charges are about -2 for the W and Zr atoms and -1 for the Os atom, respectively. Hence, the bonding between the Os atom and the Si₁₀ cage is a mixture of metallic, covalent, and ionic bonding, whereas the one between the Zr atom and the Si_{14} cage is a mixture of the two latter bonding. Consequently, a strong interaction between the Os (Zr) atom and the Si_{10} (Si₁₄) cage is anticipated, as is confirmed from the large EEs of the Os (5.60 eV) and Zr atom (6.18 eV) inside Si₁₀ and Si₁₄, respectively.

Figure 4 shows the size dependences of the EEs and BEs of the *M*-doped Si_n clusters (M = W, Zr, Os, and Pt). Initially, the four BEs generally increase with the increased size, simultaneously peaking at n = 16. Besides n = 16, special thermodynamical stability is also seen at n = 8 and 12 for M = W, n = 14 for M = Zr and Pt, and n = 12 for M = Os. If the M and Si are fully reacted, the strongest abundance can be anticipated at the global thermodynamically stable point, i.e., n = 16, for all the four clusters (for M = W, a comparable abundance can also be anticipated at n = 15 due to its close BE to the case of n = 16). However, in an incomplete reaction, the cluster growth would probably end at smaller-size locally thermodynamically stable points. Compared with previous separate calculations [10,17], our job first gave a unified explanation to the observed cluster growth end at n = 12 [5] and strongest abundance at n = 15 and 16 [14] for the W-doped Si_n clusters when using the inert silane and reactive bare Si atoms or clusters as Si source, respectively. The observed cluster growth end at n = 14 for the Zr-doped Si_n clusters corresponding to using the silane as Si source can be well understood in the same way. The EE-n curves have much similarity to the BE-nones. Initially, the four EEs generally increase with the increased size owing to the increased M-Si bond number,

FIG. 2 (color). Ground state isomers of the M-doped Si_n clusters that satisfy the octet rule but $M \neq$ group 6 metals with the one exception of Zr@Si₁₂

for (a) Os@Si₁₀ viewed from the top of the hexagonal plane, (b) same as (a) but viewed from the side of the hexagonal plane, and (c) for the *dbhpb* Zr@Si₁₄. The charge densities at the surfaces are 0.060 and 0.045 a.u. for Os@Si10 and Zr@Si14, respectively.

(c)

FIG. 4. Size dependences of the EEs and BEs of the *M*-doped Si_n with M = W, Zr, Os, and Pt. The clusters with simultaneous special thermodynamical and chemical stabilities are labeled by half-filled signs.

and they simultaneously peak at n = 16 as well. This suggested that the maximal coordination of M with Si is 16, a result consistent with the observed size upper limit of the compact $M@Si_n$. To stabilize higher Si_n clusters, more metal atoms are thus required. Optimization of the Si₂₀ fullerene containing a W dimer can indeed result in a compact elongated dodecahedron (Fig. 1). Remarkably, the locally stable points in the BE-*n* curves are also the ones in the EE-*n* curves except for Zr@Si₁₄, and this correspondence indicates that the locally thermodynamical stability arises from an exceptionally strong interaction between the M and the Si_n cage at these points. Notably five clusters are found to show high both chemical and thermodynamical stabilities, and they are W@Si₁₂, W@Si₁₅, Zr@Si₁₄, Zr@Si₁₆, and Os@Si₁₂.

In summary, the metal atom is not always located in the center of the Si_n clusters even for the completely dehydrogenated species, unless the sizes of the Si_n clusters are large enough. Two novel structures of the chemically stable $M@Si_ns$ (basketlike structure for Os@Si₁₀ and distorted bicapped hexagonal prism for Zr@Si₁₄) are revealed for the first time, and the suitable $M@Si_n$ building block for cluster-assembled materials is distributed in the range of $10 \le n \le 16$. There are simultaneous magic behaviors in thermodynamical and chemical stabilities for $W@Si_{12}$, $W@Si_{15}$, $Zr@Si_{14}$, $Zr@Si_{16}$, and $Os@Si_{12}$, which agree well with the experimental growth end at n = 12 and 14 in a dehydrogenated form for the W- and Zr-doped Si clusters, respectively [5].

All the calculations were done using the GAUSSIAN 98 package [18]. This work was supported by the JSPS, NSFC (Grant No. 10104001), and TWAS. We thank Professor V. Kumar for providing the geometry of one cubic $W@Si_{15}$ and Y. Zhou, Y. Choe, S. Re, N. Takagi, S. Zhang, and Y. Wu for helpful discussions.

*Electronic address: lu@ims.ac.jp

- [†]Electronic address: nagase@ims.ac.jp [1] For example, see M. F. Jarrold and J. E. Bower, J. Chem. Phys. **96**, 9180 (1992), and references therein.
- [2] U. Rothlisberger, W. Andreoni, and M. Parrinello, Phys. Rev. Lett. **72**, 665 (1994).
- [3] K. M. Ho et al., Nature (London) 392, 582 (1998).
- [4] I. Rata et al., Phys. Rev. Lett. 85, 546 (2000).
- [5] H. Hiura, T. Miyazaki, and T. Kanayama, Phys. Rev. Lett. 86, 1733 (2001).
- [6] A. D. Beck, J. Chem. Phys. 98, 5648 (1993).
- [7] P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 270 (1985);
 82, 299 (1985); W. R. Wadt and P. J. Hay, *ibid.* 82, 284 (1985).
- [8] K. Raghavachari and C. M. Rohlfing, J. Chem. Phys. 89, 2219 (1988).
- [9] V. Kumar and Y. Kawazoe, Phys. Rev. Lett. 87, 045503 (2001).
- [10] V. Kumar and Y. Kawazoe, Phys. Rev. B 65, 073404 (2001).
- [11] B. L. Zhang et al., J. Chem. Phys. 98, 3095 (1993).
- [12] F. Diederich *et al.*, Science **252**, 548 (1991).
- [13] M. Sanekata *et al.*, Trans. Mater. Res. Soc. Jpn. 25, 1003 (2000); M. Ohara *et al.*, J. Phys. Chem. A 106, 3702 (2002).
- [14] S. M. Beck, J. Chem. Phys. 87, 4233 (1987); 90, 6306 (1989).
- [15] J. M. L. Martin, J. EI-Yazal, and J.-P. Francoiş, Chem. Phys. Lett. 248, 345 (1996).
- [16] D. A. McQuarrie, *Statistical Thermodynamics* (Harper & Row, New York, 1973).
- [17] S. N. Khanna, B. K. Rao, and P. Jena, Phys. Rev. Lett. 89, 016803 (2002).
- [18] M. J. Frisch et al., Gaussian 98 Revision A.9 (Gaussian, Inc., Pittsburgh, PA, 1998).