Compound Semiconductor Based Integrated Optical Devices for OFC

Yi LUO, Chang-Zheng SUN, Bing XIONG, Jian WANG, Peng-Fei CAI, and Zhi-Zhi LIU

State Key Lab on Integrated Optoelectronics Dept. Of Electronic Engineering Tsinghua University, Beijing 100084, China

2009-10-12

Outline

Brief Introduction
Device Structure of Recent Work
Fabrication Technologies
Characteristics
Fabrication and Characteristics of Module for 40 Gb/s Applications

Brief Introduction of Our State Key Lab

- What are the State Key Labs
- We are Jointed by THU, Jilin Univ., and Semiconductor Institute of CAS
- We are among the best in IT area
- Main research subjects in THU
 - Optoelectronic Materials and Devices
 - Components Based on Fiber
 - High Speed Optical Fiber Transmission and Network Technologies

Molecular Beam Epitaxy

Molecular Beam Epitaxy

Liquid Phase Epitaxy

MOCVD System for GaN

2009-10-12

Laboratory Facilities

Wafer Characterization
 High Resolution X-Ray Diffraction (HR-XRD)

 Structural characteristics of epitaxial layers

 Photoluminescence (PL)

 Optical properties of wafer
 Hall Measurement
 Electronic characteristics of materials

High Resolution XRD

Photoluminescence

Hall Measurement

2009-10-12

Laboratory Facilities

Chip Processing

 Lithography
 Pattern and mask forming

 Plasma-Enhanced CVD (PECVD)

 SiO₂ and Si_xN film deposition
 Inductively Coupled Plasma (ICP)

 Dry etching of GaAs, InP, and GaN materials

Lithography

PECVD System

2009-10-12

ICP Dry-Etching System

2009-10-12

Outline

Brief Introduction
Device Structure of Recent Work
Fabrication Technologies
Characteristics
Fabrication and Characteristics of Module for 40 Gb/s Applications

光纤通信网络中的的有源器件

2009-10-12

光纤网络中的关键有源器件

■各种光源

- •低成本、高可靠激光器(FP-LD, VCSEL)
- 直接调制的DFB-LD
- DFB-LD/EA调制器集成光源
- 波长可调谐与波长可选择激光器

■高速波导探测器

■半导体光放大器与波长转化器件

低成本、高可靠半导体激光器

■ 应用领域

- 局域网(Access network)
- 城域网(Metropolitan transmission)
- Bit rate: 155 MB/s (FP-LDs) ~ 10 Gb/s (DFB-LDs)

■低成本、高可靠的要求

- 宽工作温度范围
- 高成品率与低制造成本
- 易于封装

2009-10-12

FP-LD及其努力方向

Full-Wafer的制造技术:端面刻蚀技术 与端面镀膜技术
提高温度特性的途径:AlGaInAs激光器 与高特征温度

垂直腔面发射激光器的优点

- 极低阈值电流
- 动态单模可行
- 长寿命(有源区内 置)
- 容易与光纤耦合
- 可在片测试,降低成本
- 可形成高密度二维阵
 列
 2009-10-12
 State Key J

中波段: 980nm

- 材料: GalnAs-GaAs
- 最近记录:阈值数十个微安,室温连续波运行
- 理论预计阈值为1微安
- 技术已较成熟:选择性氧化已成为标准光电限制结构,通过在 (311)B衬底生长可避免极化不稳定。
- 可用于10Gbps LAN市场

长波段: GaInAsP-InP

- 材料: GalnAsP-InP 用于干线通信(1.3um)
- 困难:电子限制弱、Auger复合严重、GalnAsP与 InP折射率差小难以制作DBR镜面
- 解决方案: 三氧化二铝和硅构成DBR、氧化镁和硅 DBR,另外也可用外延键合(epitaxial bonding) 方法制作有源区及GaAs-AlAs 镜面
- 上述两种方法均得到了较好结果,但第二种方法需耗费较多晶片,成本较高
- 近期研究: AlGaAsSb-GaAs构成的DBR镜面、隧道 结及AlAs氧化物限制结构

1300nm VCSEL with dielectric DBR

长波段: GaInNAs-GaAs

■材料: GalnNAs-GaAs晶格匹配。 ■ 优点: 如能将氮含量增加到5%,则 1300-1500nm波段可被覆盖,同时 GaAs-AlAs DBR容易制作, 各种基于 GaAs的器件结构都可用于此材料 ■ 此材料的使用将极大改变VCSEL在长波 段的特性 ■ 目前水平: 1.3µm 接近实用水平

增益耦合DFB-LD

2009-10-12

成品率的计算结果

光谱与脉冲宽度的关系

Uncooled Gain-Coupled DFB LDs

- Stable single mode operation from 40 to 85°C
- Integrated beam-expander for improved coupling tolerance
- Gain-coupled DFB lasers with current-blocking gratings

Directly Modulated DFB LDs

- Applications
- Gigabit Ethernet
- Metropolitan transmission
 - Bit rate: up to 10 Gb/s
- Wavelength: 1.3 μm & 1.55 μm

Limitations

- Limited transmission span (< 20 km) due to large linewidth enhancement factor α (> 4)
- Modulation speed is limited by carrier relaxation oscillation

10 Gb/s Directly Modulated DFB LDs for Metropolitan Data Transmission

Small-signal RF Response

BER Characteristics

Outline

Brief Introduction
Device Structures of Recent work
Fabrication Technologies
Characteristics
Fabrication and Characteristics of Module for 40 Gb/s Applications

Schematic of EA Modulator Integrated DFB Laser Diode

Wavelength Compatibility in EMLs

Wavelength Compatibility for Integrated EA

 Lasing wavelength of the DFB laser should be on the longer wavelength side of the absorption edge of the EA modulator

Integration Schemes

- Butt-joint Integration
- Selective Etching
- Selective Area Growth
- Quantum Well Interdiffusion -

 $Eg_{Modulator} > Eg_{Laser}$

Identical Epitaxial Layer Structure $\Rightarrow \lambda_{Bragg} > \lambda_{Exciton}$

2009-10-12

Concept of IEL Integration Scheme

Identical Epitaxial Layer Scheme

- Identical MQW structure for laser & modulator
- Bragg wavelength detuned from gain peak
- What Makes IEL Feasible?
 - Wide gain spectrum of strained-layer MQW
 - Junction temperature difference between laser and modulator
 - Carrier-induced band-gap shrinkage effect
- Advantage of IEL Scheme
 - Simplified fabrication procedure \Rightarrow Improved reproducibility and higher yield
IEL Structure Based SOA Integrated EA Modulator

Outline

Brief Introduction
Device Structure of Recent Work
Key Fabrication Technologies
Characteristics
Fabrication and Characteristics of Module for 40 Gb/s Applications

ICP Dry Etching for InGaAsP/InP Integrated Devices

Advantages of Dry Etching Technology

- High anisotropy & resolution
- Good reproducibility & dimensional control
- Inductively Coupled Plasma Dry Etching
 - High plasma intensity \Rightarrow High etch rate
 - Low bias \Rightarrow Low damage
 - Better controllability & Lower cost
- Cl₂/CH₄/Ar ICP Etching for EML Fabrication
 - Vertical sidewall & Smooth surface
 - Precise control of ridge width in EA section

Dry Etching of InP-Based Semiconductors by ICP

SEM Image of Etched Sidewall

Surface Morphology Measured by AFM (RMS Roughness: 0.27 nm)

2009-10-12

ICP Dry Etching for AlGaInAs/InP Integrated Devices

Difficulty in Dry-Etching of AlGaInAs

- Oxidization of Al
- Self-masking due to low volatility of InCl_x
- Dry-Etching of AlGaInAs by Cl₂/BCl₃/CH₄ ICP
 - BCl₃ for oxygen removal
 - CH_4 to form volatile In(CH₃)_x
 - Cl₂ for increased etch rate

AlGaInAs MQW Laser Diodes with Etched Facets

Why AlGaInAs MQWs?

Larger conduction band discontinuity

• $\Delta E_c / \Delta E_g \sim 0.7$

Better thermal behavior

■ T_c ~ 120 K

- Why Etched Facets?
 - Laser cavity formed without cleaving into bar
 - On wafer test made possible

Performance of Etched-Facet AlGaInAs MQW Lasers

AlGaInAs Mirror Etched by Cl₂/BCl₃/CH₄ ICP

I-L Curves of Lasers with Cleaved & Etched Facets

2009-10-12

Regrowth-Free DFB Lasers

Conventional DFB Lasers

- Distributed feedback by embedded gratings
- Regrowth required after grating definition
- Lateral Coupled DFB Lasers
 - Longitudinal feedback by periodically perturbation in the lateral evanescent field
 - Deeply etched surface gratings
 - No regrowth involved

Implementation of Lateral Optical Confinement

Ridge defined before etching of gratings to provide lateral optical confinement By other group Lateral mode confinement provided by effective ridge waveguide By our group

Mode Profile of Lateral-Coupled DFB Laser

Fundamental Mode Calculated by FEM

2009-10-12

Influence of Grating Depth on Coupling Strength

Coupling Strength vs. Grating Depth

2009-10-12

Deep Surface Gratings Fabricated by ICP Dry-Etching

SiN_x Mask Etched with SF₆

Second-Order Surface Gratings Etched by Cl₂/CH₄/Ar ICP

2009-10-12

Lasing Behavior of Lateral-Coupled DFB Laser

Wang J, Tian J B, et al. IEEE Photon. Technol. Lett., 2005, 17(7):1372-1374

2009-10-12

Far Field Pattern Along Junction Plane

Only Fundamental Lateral Mode Observed

2009-10-12

Submount for High-Speed EA Modulators

Heat Dissipation

- Substrate with high thermal conductance

Modulation Signal Feeding

- Transmission line for microwave signal feeding
- High resistive substrate to reduce microwave loss

Impedance Matching for EA Modulator

- EA modulator behaves as capacitor at high frequency
- 50 Ω sheet resistor required to reduce microwave reflection

Schematic of Submount for High-Speed EA Modulators

(a) Top View (b) Cross-Section View

2009-10-12

Improved Microwave Characteristics by Use of Ti/Cu/Ni/Au Instead of Cr/Au

Microwave Reflection of Al₂O₃ Submount with Cr/Au Electrode Microwave Reflection of Al₂O₃ Submount with Ti/Cu/Ni/Au Electrode

2009-10-12

Chip-Level Packaging of EA Modulator

Fabrication of the Planar Electrode Structure for 40 Gb/s EA Modulator Integrated Devices

40 Gb/s EA Modulator Integrated with SOA

EA Modulator Integrated with SOA

- Compensate both coupling and absorption losses
- IEL integration scheme adopted
- Extended Modulation Bandwidth
 - Reducing junction capacitance
 - Narrow high-mesa ridge waveguide
 - Reducing electrode capacitance
 - Thick dielectric film beneath bonding pad
 - Reducing packaging induced parasitic
 - Specially designed submount

Device Structure and Capacitance of EA Modulator

Modulator Capacitance including Junction Capacitance and Electrode Capacitance

View

2009-10-12

Difficulties to Reduce Device Capacitance Further for 40 Gb/s Modulation

- Increase thickness of insulation film to reduce electrode capacitance, trade-off between:
 - Deep groove formed between ridge and electrode platform
 - Thickness of sidewall electrode reduced and the stability of metal connection influenced
 - Series resistance increased
- Reduce junction width to reduce junction capacitance further
 - Ridge waveguide is easier to be damaged in processes
 - Series resistance increased

Electrode Planation to Reduce Electrode Capacitance

Merit: uniform thicker electrode film, increased stability, reduced series resistance

Polyimide based Planation

Thick SiO₂ and Polymer based Planation

Air-Bridge Structure

Our Choice of the Electrode Planation Technique

- Using Polyimide
 - Comparably softer to cause electrode bonding problem
 - Not well sticks to wafer and often shrinks
- By Air-Bridge Structure
 - Complex and difficult fabrication process
 - Lack of protection for bridge waveguide
- Self-developed Thick-SiO₂ based Planation Process
 - ✓ Well stick to wafer and small strain
 - \checkmark Hard SiO₂ , better for electrode bonding

Our Choice of Reducing Junction Width

✓ Dry-etched High Mesa Structure:

- Higher etched depth to benefit reducing capacitance
- Shortcoming: lower mechanic strength of ridge waveguide
- Special shallow structure: Electric Field Confinement by etching p-layer outside ridge waveguide stripe
 - Suitable to adopt reversed ridge structure to realize wider top width, and lower contact resistance
 - Shortcoming: etching depth restricted, and insulation thickness and electrode capacitance limited

High-Mesa Ridge Waveguide

ICP Etched Narrow High-Mesa RWG Structure Thick Dielectric Film Below Electrode Pad

2009-10-12

IEL Structure Based SOA Integrated EA Modulator

Fabrication Processes of Identical Epitaxial Layer Structure Based SOA/EA Modulator Integrated Devices (1)

Epitaxial Growth of Device Material 2 μm-wide Wet Etched Ridge Waveguide in Both Sections

ICP Dry-Etched 4 µm-high Ridge Waveguide in EA Modulator

2009-10-12

Fabrication Processes of Identical Epitaxial Layer Structure Based SOA/EA Modulator Integrated Devices (2)

Thick SiO₂ and Polymer based Insulation Planation

Uncovering Electrode Window Forming Cr/Au Patterned P-Side Electrode Fabrication Processes of Identical Epitaxial Layer Structure Based SOA/EA Modulator Integrated Devices (3)

Electrode Isolation between SOA and EA Modulator 2009-10-12

Backside Thinning and Deposition of N-type Electrode Cleaving Chip and AR Coating at Both Facets

Outline

Brief Introduction
Device Structure of Recent Work
Fabrication Technologies
Characteristics
Fabrication and Characteristics of Module for 40 Gb/s Applications

SOA/EA Modulator

Extinction Ratios of Integrated EA Modulator 2009-10-12 State Key I

Amplification Performance of SOA

Integrated Device for 40 Gb/s System

Xiong B, Wang J, Zhang L, et al. IEEE Photon. Technol. Lett. 2005, 17(2):327-329 2009-10-12

Schematic of EA Modulator Integrated DFB Laser Diode

Static Performances of 40 GHz Integrated EMLs

Light Power versus Current Curve Very Low I_{th}= 12 mA Static Extinction Ratio: 13 dB@-3V

Small Signal Modulation Response of 40 GHz Integrated EMLs

BW (3 dBe) > 40 GHz
Outline

Brief Introduction
Device Structure of Recent work
Fabrication Technologies
Characteristics
Fabrication and Characteristics of Module for 40 Gb/s Applications

14-pin Butterfly Packaged Integrated Light Source Module

14-pin Butterfly Packaged Module

Circuit Schematic

2009-10-12

Static Modulation Characteristics of Integrated Light Source Module

Threshold Current ~ 25 mA

Extinction Ratio > 15 dB

2009-10-12

Small Signal Frequency Response

BW (3 dBe) ~ 3 GHz

Modulation bandwidth suitable for 2.5 Gb/s applications

Transmission Performance in 2.5 Gb/s WDM System

Back to Back Eye Diagram

BER Performance

2009-10-12

EML Module for 10 Gb/s Applications

K-connector or GPO connector for Modulation Signal Input

2009-10-12

EML for 10 Gb/s Fiber Communications

BW (3 dBe) > 10 GHz

Modulation bandwidth suitable for applications in 10 Gb/s systems

Eye Pattern Under 10 Gb/s NRZ PRBS Modulation

Back-to-Back

After Transmission Through 35 km SMF

2009-10-12

Bit-Error-Rate Performance

Power Penalty < 1 dB @ BER = 10^{-12}

2009-10-12

40 Gb/s EML Transmitter Module

Prototype 40 Gb/s Transmitter Module

Inside View of 40 Gb/s Transmitter Module

2009-10-12

Resonances in Frequency Response of Packaged Module

Suppression of Resonances in Frequency Response

After AR-coating & CPW Design Optimization

2009-10-12

Large Signal Modulation Performance

Eye Diagram Under 40 Gb/s NRZ Pseudo-Random Bit Sequence Modulation ($V_{p-p} = 2 V$)

2009-10-12

Thanks for YOUr attention